Rapid evolutionary dynamics of an expanding family of meiotic drive factors and their hpRNA suppressors

[ad_1]

  • 1.

    Zanders, SE & Unckless, RL Fertility costs of meiotic conductors. Court. Biol. 29, R512 – R520 (2019).

    CAS PubMed PubMed Central Google Scholar

  • 2.

    Agren, JA & Clark, AG Selfish Genetic Elements. PLoS Genet. 14, e1007700 (2018).

    PubMed PubMed Central Google Scholar

  • 3.

    Lindholm, AK et al. The ecology and evolutionary dynamics of the meiotic drive. Trends Ecol. Evol. 31, 315-326 (2016).

    Google Scholar PubMed

  • 4.

    Jaenike, J. Meiotic control of sex chromosomes. Annu Rev. School. Syst. 32, 25-49 (2001).

    Google Scholar

  • 5.

    Helleu, Q. et al. The rapid evolution of a heterochromatin protein from the Y chromosome underlies the meiotic drive of the sex chromosome. Proc. Natl Acad. Sci. United States 113, 4110–4115 (2016).

    CAS PubMed PubMed Central Google Scholar

  • 6.

    Tao, Y., Hartl, DL & Laurie, CC Sex-segregation distortion associated with reproductive isolation in drosophila. Proc. Natl Acad. Sci. United States 98, 13183-13188 (2001).

    CAS PubMed PubMed Central Google Scholar

  • 7.

    Tao, Y. et al. A sex-ratio meiotic drive system in Drosophila simulans. II: a distortion linked to the X. PLoS Biol. 5, e293 (2007).

    PubMed PubMed Central Google Scholar

  • 8.

    Tao, Y., Masly, JP, Araripe, L., Ke, Y. & Hartl, DL A sex-ratio meiotic drive system in Drosophila simulans. I: an autosomal suppressor. PLoS Biol. 5, e292 (2007).

    PubMed PubMed Central Google Scholar

  • 9.

    Garrigan, D. et al. Genome sequencing reveals complex speciation in the Drosophila simulans clade. Genome Res 22, 1499-1511 (2012).

    CAS PubMed PubMed Central Google Scholar

  • ten.

    Masly, JP & Presgraves, DC High resolution genome-wide dissection of the two rules of speciation in drosophila. PLoS Biol. 5, e243 (2007).

    PubMed PubMed Central Google Scholar

  • 11.

    Presgraves, DC, Gerard, PR, Cherukuri, A. & Lyttle, TW Large-scale selective scanning among segregation-distorting chromosomes in African populations of Drosophila melanogaster. PLoS Genet. 5, e1000463 (2009).

    PubMed PubMed Central Google Scholar

  • 12.

    Meiklejohn, CD & Tao, Y. Genetic conflict and evolution of sex chromosomes. Trends Ecol. Evol. 25, 215-223 (2010).

    Google Scholar PubMed

  • 13.

    Kingan, SB, Garrigan, D. & Hartl, DL Recurrent selection on Winters sex ratio genes in Drosophila simulans. Genetic 184, 253-265 (2010).

    CAS PubMed PubMed Central Google Scholar

  • 14.

    Chakraborty, M. et al. Evolution of the genome structure in the Drosophila simulans complex of species. Genome Res 31, 380-396 (2021).

    PubMed PubMed Central Google Scholar

  • 15.

    Lin, C.-J. et al. The hpRNA / RNAi pathway is essential for resolving intragenomic conflicts in the drosophila male germ line. Dev. Cell 46, 316-326.e5 (2018).

    CAS PubMed PubMed Central Google Scholar

  • 16.

    Wen, J. et al. Adaptive regulation of testicular gene expression and control of male fertility by drosophila hairpin RNA pathway. Mol. Cell 57, 165-178 (2015).

    Google School CAS PubMed Fellow

  • 17.

    Usakin, L. et al. The transcription of the 1.688 satellite DNA family is under the control of the RNA interference machinery in Drosophila melanogaster ovaries. Genetic 176, 1343-1349 (2007).

    CAS PubMed PubMed Central Google Scholar

  • 18.

    Garrigan, D., Kingan, SB, Geneva, AJ, Vedanayagam, JP & Presgraves, DC Genome diversity and divergence in Drosophila mauritiana: multiple signatures of faster X evolution. Genome Biol. Evol. 6, 2444-2458 (2014).

    PubMed PubMed Central Google Scholar

  • 19.

    Rathke, C. et al. Transition from a nucleosome-based chromatin configuration to a protamine-based chromatin configuration during spermiogenesis in drosophila. J. Cell Sci. 120, 1689-1700 (2007).

    Google School CAS PubMed Fellow

  • 20.

    Dean, CM et al. A testis-specific chaperone and Rremodeler ISWI chromatin are involved in repackaging the paternal genome. Cell Rep. 13, 1310-1318 (2015).

    Google School CAS PubMed Fellow

  • 21.

    Dorus, S., Freeman, ZN, Parker, ER, Heath, BD & Karr, TL Recent origins of sperm genes in drosophila. Mol. Biol. Evol. 25, 2157-2166 (2008).

    CAS PubMed PubMed Central Google Scholar

  • 22.

    Wang, W., Yu, H. & Long, M. Duplication-degeneration as a mechanism of gene fission and origin of new genes in drosophila species. Nat. Broom. 36, 523-527 (2004).

    Google School CAS PubMed Fellow

  • 23.

    Khost, DE, Eickbush, DG & Larracuente, AM Single-molecule sequencing solves the detailed structure of complex satellite DNA loci in Drosophila melanogaster. Genome Res 27, 709-721 (2017).

    CAS PubMed PubMed Central Google Scholar

  • 24.

    Sproul, JS et al. Dynamic evolution of euchromatic satellites on the X chromosome in Drosophila melanogaster and the simulating clade. Mol. Biol. Evol. 37, 2241–2256 (2020).

    CAS PubMed PubMed Central Google Scholar

  • 25.

    Travaglini, EC, Petrovic, J. & Schultz, J. DNA satellites in embryos of various species of the genus drosophila. Genetic 72, 431-439 (1972).

    CAS PubMed PubMed Central Google Scholar

  • 26.

    de Lima, LG, Hanlon, SL & Gerton, JL Origins and evolutionary models of the satellite DNA family 1.688 in drosophila phylogeny. G3 (Bethesda) ten, 4129-4146 (2020).

    Google Scholar

  • 27.

    Haudry, A., Laurent, S. & Kapun, M. Population genomics on the fly: recent advances in drosophila. Mol methods. Biol. 2090, 357-396 (2020).

    Google Scholar PubMed

  • 28.

    Thomas, J., Phillips, CD, Baker, RJ & Pritham, EJ Rolling circle transposons catalyze genomic innovation in a line of mammals. Genome Biol. Evol. 6, 2595-2610 (2014).

    CAS PubMed PubMed Central Google Scholar

  • 29.

    Chang, CH et al. Islands of retro-elements are major components of drosophila centromeres. PLoS Biol. 17, e3000241 (2019).

    CAS PubMed PubMed Central Google Scholar

  • 30.

    Krsticevic, FJ, Schrago, CG & Carvalho, AB Long-read single-molecule sequencing to resolve gene copies in tandem: the Mst77Y region on the Drosophila melanogaster Y chromosome. G3 (Bethesda) 5, 1145-1150 (2015).

    CAS Google Scholar

  • 31.

    Jayaramaiah Raja, S. & Renkawitz-Pohl, R. Substitution by Drosophila melanogaster protamins and Mst77F from histones during chromatin condensation in late spermatids and the role of sesame in the removal of these proteins from the male pronuclei. Mol. Cell. Biol. 25, 6165-6177 (2005).

    PubMed PubMed Central Google Scholar

  • 32.

    Nagao, A. et al. Pathways of biogenesis of piRNA loaded on AGO3 in the drosophila testicle. RNA 16, 2503-2515 (2010).

    CAS PubMed PubMed Central Google Scholar

  • 33.

    Chen, P. et al. PiRNA-mediated gene regulation and adaptation to gender-specific transposon expression in D. melanogaster male germ line. Genes Dev. 35, 914-935 (2021).

    CAS PubMed PubMed Central Google Scholar

  • 34.

    Malone, CD et al. Specialized piRNA pathways act in the germ line and somatic tissues of the drosophila ovary. Cell 137, 522-535 (2009).

    CAS PubMed PubMed Central Google Scholar

  • 35.

    Lau, N. et al. Abundant primary piRNAs, endo-siRNAs and microRNAs in a drosophila ovarian cell line. Genome Res 19, 1776-1785 (2009).

    CAS PubMed PubMed Central Google Scholar

  • 36.

    Muirhead, CA & Presgraves, DC DNA-mediated satellite diversification of a family of sex-ratio meiotic drive genes in drosophila. Nat. School. Evol. (in the press).

  • 37.

    Rathke, C., Baarends, WM, Awe, S. & Renkawitz-Pohl, R. Chromatin dynamics during spermiogenesis. Biochim. Biophys. Acta 1839, 155-168 (2014).

    Google School CAS PubMed Fellow

  • 38.

    Wang, T., Gao, H., Li, W. & Liu, C. Critical role of histone replacement and changes in male fertility. Genet before ten, 962 (2019).

    CAS PubMed PubMed Central Google Scholar

  • 39.

    Meiklejohn, CD et al. Gene flow mediates the role of the meiotic drive of sex chromosomes during complex speciation. eLife 7, e35468 (2018).

    PubMed PubMed Central Google Scholar

  • 40.

    Lee, JE & Yi, R. Highly efficient ligation of small RNA molecules for microRNA quantification by high throughput sequencing. J. Vis. Exp. 93, e52095 (2014).

    Google Scholar

  • 41.

    Clark, AG et al. Evolution of genes and genomes on the drosophila phylogeny. Nature 450, 203-218 (2007).

    Google Scholar PubMed

  • 42.

    Li, H. et al. The Sequence Alignment / Map and SAMtools format. Bioinformatics 25, 2078-2079 (2009).

    PubMed PubMed Central Google Scholar

  • 43.

    Wang, L., Wang, S. & Li, W. RSeQC: Quality control of RNA-seq experiments. Bioinformatics 28, 2184-2185 (2012).

    Google School CAS PubMed Fellow

  • 44.

    Altschul, SF, Gish, W., Miller, W., Myers, EW & Lipman, DJ Basic local alignment finder. J. Mol. Biol. 215, 403-410 (1990).

    Google School CAS PubMed Fellow

  • 45.

    Huelsenbeck, J. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754-755 (2001).

    Google School CAS PubMed Fellow

  • [ad_2]
    Source link

    Comments are closed.